Effect of unilateral denervation on maximum specific force in rat diaphragm muscle fibers.
نویسندگان
چکیده
We hypothesize that 1) the effect of denervation (DNV) is more pronounced in fibers expressing fast myosin heavy chain (MHC) isoforms and 2) the effect of DNV on maximum specific force reflects a reduction in MHC content per half sarcomere or the number of cross bridges in parallel. Studies were performed on single Triton X-100-permeabilized fibers activated at a pCa (-log Ca2+ concentration) of 4.0. MHC content per half sarcomere was determined by densitometric analysis of SDS-PAGE gels and comparison to a standard curve of known MHC concentrations. After 2 of wk DNV, the maximum specific force of fibers expressing MHC2X was reduced by approximately 40% (MHC(2B) expression was absent), whereas the maximum specific force of fibers expressing MHC2A and MHC(slow) decreased by only approximately 20%. DNV also reduced the MHC content in fibers expressing MHC2X, with no effect on fibers expressing MHC2A and MHC(slow). When normalized for MHC content per half sarcomere, force generated by DNV fibers expressing MHC2X and MHC2A was decreased compared with control fibers. These results suggest the force per cross bridge is also affected by DNV.
منابع مشابه
Effect of denervation on ATP consumption rate of diaphragm muscle fibers.
Denervation (DNV) of rat diaphragm muscle (DIAm) decreases myosin heavy chain (MHC) content in fibers expressing MHC(2X) isoform but not in fibers expressing MHC(slow) and MHC(2A). Since MHC is the site of ATP hydrolysis during muscle contraction, we hypothesized that ATP consumption rate during maximum isometric activation (ATP(iso)) is reduced following unilateral DIAm DNV and that this effec...
متن کاملMaximum specific force depends on myosin heavy chain content in rat diaphragm muscle fibers.
In the present study, myosin heavy chain (MHC) content per half sarcomere, an estimate of the number of cross bridges available for force generation, was determined in rat diaphragm muscle (Dia(m)) fibers expressing different MHC isoforms. We hypothesize that fiber-type differences in maximum specific force [force per cross-sectional area (CSA)] reflect the number of cross bridges present per C...
متن کاملDenervation alters myosin heavy chain expression and contractility of developing rat diaphragm muscle.
We hypothesized that unilateral denervation (DNV) of the rat diaphragm muscle (Dia(m)) in neonates at postnatal day 7 (D-7) alters normal transitions of myosin heavy chain (MHC) isoform expression and thereby affects postnatal changes in maximum specific force (P(o)) and maximum unloaded shortening velocity (V(o)). The relative expression of different MHC isoforms was analyzed electrophoretical...
متن کاملDenervation-induced changes in myosin heavy chain expression in the rat diaphragm muscle.
Unilateral denervation (Dnv) of the rat diaphragm muscle (Diam) markedly alters expression of myosin heavy chain (MHC) isoforms. After 2 wk of Diam Dnv, MHC content per half-sarcomere decreases in fibers expressing MHC(2X) and MHC(2B). We hypothesized that changes in MHC protein expression parallel changes in MHC mRNA expression. Relative MHC isoform mRNA levels were determined by Northern anal...
متن کاملDenervation effects on myonuclear domain size of rat diaphragm fibers.
Denervation (DNV) of rat diaphragm muscle (DIAm) leads to selective atrophy of type IIx and IIb fibers, whereas the cross-sectional area of type I and IIa fibers remains unchanged or slightly hypertrophied. DIAm DNV also increases satellite cell mitotic activity and myonuclear apoptosis. Similar to other skeletal muscles, DIAm fibers are multinucleated, and each myonucleus regulates the gene pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 90 4 شماره
صفحات -
تاریخ انتشار 2001